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Abstract
The ability to understand and ultimately predict ecosystem response to multiple pressures

is paramount to successfully implement ecosystem-based management. Thresholds shifts

and nonlinear patterns in ecosystem responses can be used to determine reference points

that identify levels of a pressure that may drastically alter ecosystem status, which can in-

form management action. However, quantifying ecosystem reference points has proven

elusive due in large part to the multi-dimensional nature of both ecosystem pressures and

ecosystem responses. We used ecological indicators, synthetic measures of ecosystem

status and functioning, to enumerate important ecosystem attributes and to reduce the com-

plexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were

used to quantify the importance of four environmental and four anthropogenic pressure vari-

ables to the value of ecological indicators, and to quantify shifts in aggregate ecological indi-

cator response along pressure gradients. Anthropogenic pressure variables were critical

defining features and were able to predict an average of 8-13% (up to 25-66% for individual

ecological indicators) of the variation in ecological indicator values, whereas environmental

pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological in-

dicators) of ecological indicator variation. Each pressure variable predicted a different suite

of ecological indicator’s variation and the shapes of ecological indicator responses along

pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to ex-

ploitation, the most important pressure variable, occurred when commercial landings were

20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem re-

sponse to environmental pressures were much less important, which suggests that anthro-

pogenic pressures have significantly altered the ecosystem structure and functioning of the

NES LME. Gradient response curves provide ecologically informed transformations of pres-

sure variables to explain patterns of ecosystem structure and functioning. By concurrently

identifying thresholds for a suite of ecological indicator responses to multiple pressures, we

demonstrate that ecosystem reference points can be evaluated and used to support eco-

system-based management.
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Introduction
Natural environmental variation [1–3] and multiple human uses, such as coastal-zone develop-
ment and the harvest of living marine resources (LMRs; [4–6]), influence the structure and
function of marine ecosystems. Ultimately, these pressures can also have direct implications on
management actions designed to conserve these systems [7]. Ecosystem-based management is
a holistic living resource management approach that concurrently addresses multiple human
uses and ecosystem processes [7,8]. Similar to any complex system of decision-making, EBM
requires the development of goals, relevant ecosystem assessments, and decision criteria for
management action [9,10].

A specific ocean-use sector where EBM has been repeatedly explored is ecosystem-based
fisheries management (EBFM). EBFM seeks to identify, among multiple pressures and re-
sponses, the suite of management options that best address the myriad tradeoffs for fisheries
within an ecosystem [11]. Fish and fisheries are known to respond to a triad of pressures, in-
cluding human-induced, internal system dynamics, and natural environmental variability
[12,13]. A key challenge hindering fuller implementation of EBFM has been the delineation of
appropriate decision criteria cognizant of these multiple pressures and responses [14,15]. De-
velopment of ecosystem-based thresholds has high utility.

Ecosystem thresholds occur when a small change in a pressure causes either a large response
or an abrupt change in the direction of ecosystem state or function [12,16–18]. Using ecological
indicators of ecosystem status, pressure-response thresholds (i.e., single-indicator response to a
single-pressure) can be calculated from known functional forms such as piecewise regression
models or estimated with generalized additive models [19,20]. An understanding of how single
indicators respond to single pressures can be used to inform decision criteria for management
action, however, multiple pressures often influence ecosystems simultaneously. Pressure-
response thresholds can be extended into two-covariate thresholds (i.e., single-indicator re-
sponse to two pressures) that can be used to identify how multiple pressures influence indicator
values [21], however, reconciling multiple pressure-response thresholds from a suite of indica-
tors may not be feasible. Here, we introduce a multivariate technique to identify thresholds of
response to multiple pressures, for a suite of ecological indicators.

Gradient forest analysis [22] extends random forest [23], which fits an ensemble of regres-
sion tree models between ecological indicators and environmental and anthropogenic vari-
ables. Gradient forest accumulates standardized measures of indicator changes along the
gradients for multiple indicators and uses them to build cumulative response curves, which are
empirical nonlinear functions of change for each pressure variable. When considered as a mul-
tivariate ordination method, the cumulative response curve for each pressure variable can be
expressed as a vector on a scree-plot, where vector length is determined by the importance of
each ecologically informed transformation of the pressure variables. Gradient forest has been
used to quantify spatial gradients in species distributional response to environmental variables
for use with marine spatial planning [22–25]. Here, we present the first application of gradient
forest exploring marine ecosystem response to anthropogenic and environmental pressures.
The overall goal is to compare and contrast ecosystem response to multiple pressures and iden-
tify ecosystem thresholds to facilitate development of ecosystem reference points for ecosys-
tem-based fisheries management [14,15]. Gradient forest enables us to explore the empirical
shape and magnitude of changes in composition of ecosystem response along environmental
and anthropogenic pressure gradients, and to identify critical values along these gradients that
correspond to threshold changes in composition.
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Materials and Methods

Ecological indicators
The ecological indicator data used in this study were compiled from Northeast Fisheries Sci-
ence Center (NEFSC) bottom trawl surveys (BTS) that provide information regarding the re-
gional ecology and oceanography of the NES LME, which spans the continental shelf from
Cape Hatteras to Nova Scotia (data source: http://iobis.org/mapper/?resource_id=1435). These
data are routinely used to monitor trends in abundance and distribution of important living
marine resources for the region [26–28]. Using a random depth stratified survey design, the
NEFSC scientific monitoring program has sampled 350–400 stations throughout the NES LME
biannually since 1963. Stations within each depth-region stratum were randomly sampled and
surveyed fish and invertebrates were sorted according to species, weighed, and the length was
measured. Survey data were aggregated spatially and averaged across seasons to create annual
averages for each ecological indicator from 1964–2010 [29]. We chose a suite of six ecological
indicators that have been suggested and vetted as useful indicators for assessing ecosystem sta-
tus and function for the NES LME [15,30–32]: overall fish community length, planktivore and
benthivore to piscivore and shrimp-fish feeder ratio, pelagic to demersal ratio, species richness,
indicator species (Longhorn sculpin,Myoxocephalus octodecemspinosus), and trophic level
(Table 1).

Pressure variables
We chose environmental pressure variables that influence ecosystem circulation patterns, pri-
mary production, vertical mixing, and the availability of nutrients across multiple geographic
and temporal scales (Table 2). Fishing pressure has proven a challenge to estimate from an eco-
system perspective and the scientific community has yet to reach consensus on best practices
for its measure [33–36]. We quantified fishing pressure using two variables: total commercial
landings and exploitation. Landings, the total live weight of commercial species landed in the
NES LME, serves as an estimate of removals from the system and is calculated by aggregating
data reported to the National Marine Fisheries Service (NMFS) by dealers at weigh-out, log-
books, and vessel trip reports [28,37]. Fishing pressure is influenced by both fishing effort and
resource potential [33,34], so we also quantified fishing pressure as exploitation: the ratio land-
ings to surveyed biomass [35]. However, ecological indicators are also formulated with survey
data including surveyed biomass, which may result in problems with confounding. Beyond
influencing the current ecosystem state, fishing pressure may also have lagged effects on

Table 1. Ecological indicators used as response variables in gradient forest analysis.

Indicator Abbreviation Definition Indicator rationale

Length (mean) length_mean mean length (cm) of individual fish for all spp. From
BTS [15,29,47–50]

size distribution

Planktivore and benthivore to piscivore
and shrimp-fish feeder ratio (index)

plank ratio of abundance of lower trophic level guilds to
upper trophic level guilds from the BTS [15,31,32]

trophic dynamics, energy flow,
community structure

Pelagic to demersal ratio (index) pd_ratio ratio of abundance of pelagic and demersal fishes
from BTS [15,31,32]

energy flow, community structure

Species richness (frequency) richness number of surveyed spp. from BTS [47,51–53] aggregate community status

Longhorn sculpin biomass (t) b_scul total biomass of longhorn sculpin from BTS [46] sensitive species, index of
disturbance

Trophic level (mean) TL_mean mean trophic level of surveyed spp. weighted by
abundance (biomass) [4,47,54,55]

how energy flow within an ecosystem
is processed and distributed

doi:10.1371/journal.pone.0119922.t001
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ecosystems [38]. Therefore, we also introduced a one-year time lag for both measures of
fishing pressure.

Random forests
We applied random forest methods from the R package “randomForest” [39,40] to time series
of ecological indicators to assess the importance of environmental and anthropogenic pressures
on ecosystem structure and function. Random forests are composed of regression trees, where
indicator values are partitioned into two groups at a specific split value v for each predictor p to
maximize homogeneity [23]. At each partition, splits are selected to minimize the sum of
squared deviations from the group mean, termed impurity. Partitions are recursively split until
a partition becomes a terminal node. The importance of a split within each node in the tree is
measured as the reduction in the amount of variation explained by the partition.

A random forest is an aggregation of the results from an ensemble of regression trees that
synthesizes output with high classification accuracy and accounts for interactions among pre-
dictor variables [39,41]. An independent bootstrap sample of data (resampled with replace-
ment) is used to fit each tree (0.632, on average). Each partition within a tree is then split on
the best of a random subsample of predictor variables. Data not selected in the bootstrap sam-
ple, the out-of-bag (OOB) data, are used to provide cross validations of generalized error esti-
mates. Three important metrics are used with random forests: the goodness-of-fit R2

s for
indicator s, the importance Isp of each predictor p (here the pressure variables), and the raw im-
portance value Ispvt for a predictor at each split value v in each tree t. Predictor importance Isp
quantifies the contribution of a predictor to the model goodness-of-fit by computing the pre-
diction error of the model without the predictor and comparing it to the prediction error of the
full model. Specifically, Isp is estimated as the increase in OOB mean square prediction error
when the predictor is randomly permuted while the other variables in the model remain con-
stant, effectively removing the predictor signal.

The proportion of variance explained in a random forest, or the goodness-of-fit R2
s indicator

s is defined as

R2
s ¼ 1�

X

i

ðXsi � X̂siÞ
2

Xsi � �Xsð Þ2 ð1Þ

Table 2. Environmental factors used as pressure variables in gradient forest analysis.

Pressure Definition Pressure Rationale Data source

Atlantic multidecadal
oscillation (AMO)

Measure of basin-scale warm and cold phases in
the Atlantic

Provides a measure of variance
in thermohaline circulation
patterns [56]

http://www.esrl.noaa.gov/psd/data/
correlation/amon.us.data

Winter North Atlantic
Oscillation (NAO_w)

Winter (December-March) Average of relative
strength between subpolar (Icelandic) low and
subtropical (Azores) High atmospheric pressure
cells (index)

Influences temperature,
precipitation, and wind fields
[31,32]

S1_Data.csv

Sea Surface
Temperature (SST)

Mean surface temperature of the NES LME
waters (°C)

Species' distribution, growth,
and many ecological and
biological processes [57]

http://www.ncdc.noaa.gov/data-access/
marineocean-data/extended-reconstructed-
sea-surface-temperature-ersst-v3b

Precipitation
(Precip)

Annual precipitation in the catchment areas
associated with the NES LME (cm)

Influences oceanic conditions
such as salinity, stratification,
and nutrient supply [34,58]

http://cdiac.ornl.gov/ftp/ushcn_v2_monthly/
Monthly data partitioned to 1 degree boxes
and assigned to the NES LME drainages

doi:10.1371/journal.pone.0119922.t002
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Where Xsi is the ith observation of indicator s, X̂ si is the OOB prediction, and�Xs is the
mean value.

The goodness-of-fit R2
s for each random forest is portioned among predictor variables in

proportion to their importance Isp, such that R2
sp (predictor p for indicator s) is calculated as

R2
sp ¼ R2

s IspP
pIsp

ð2Þ

The importance of a predictor variable for the ecosystem R2
p is estimated by averaging R2

sp across

all indicators, such that

R2
p ¼ 1

N

X

s

R2
sp ð3Þ

We used a conditional permutation approach to account for correlations between predictor
variable values [42]. Values for each predictor were only permuted within data defined by splits
on any other predictors that were correlated above a threshold of r = 0.5 [22].

Gradient forests
Changes in ecosystem attributes along environmental and anthropogenic gradients were iden-
tified using gradient forest methods. Random forest methods are useful for quantifying the
ability for pressure variables to predict response variables and the importance of each response
variable to these predictions. Gradient forests integrate individual random forests analyses over
many response variables, which are used to develop flexible, non-parametric functions to quan-
tify thresholds in indicator response to anthropogenic and environmental pressures (see dia-
gram and further discription of these methods in [22]).

For the NES LME, we developed data matrices for both pressure (year x pressure variable)
and response (year x ecological indicator) variables. Threshold estimates along gradients of
each environmental and anthropogenic pressure variable p were generated using the gradient-
Forest package, which distributes R2 values for all indicators among predictors in proportion to
predictor importance Isp and along the gradient of values for each predictor according to the
density of raw importance values Ispvt ([22]; available online at: http://gradientforest.r-forge.r-
project.org/]. The importance associated with a split value along a predictor gradient indicates
the relative change in indicator value. Therefore, changes in indicator values are reflected in
split importance. For each predictor p, the split values v and the importance values at each split
Ispvt were combined from every tree in all random forests for each indicator s. For each indica-
tor, importance values Ispvt were standardized by the density of observed values for each predic-
tor p and normalized to sum to R2

sp. A monotonic function proportional to the importance of

splits with minimum 0 and maximum R2
sp was used to define the turnover Fsp(x) for each indi-

cator along a pressure gradient, which describes the cumulative shift in indicator value along
each pressure gradient and provides an estimate of the importance for any given pressure value
x. Cumulative ecosystem response Fp(x) for each pressure variable was estimated as mean
Fsp(x) for all indicators. The cumulative ecosystem response Fp transforms ecological units re-
flecting changes in ecological indicator value for each pressure variable [22].

Ordination of ecosystem response to pressure variables
Cumulative ecosystem response can be used to transform environmental and anthropogenic
pressure data onto a common scale. Using principal component analysis, we used ordination
to represent Fp transformed data as a biplot where coordinate position represents different
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patterns in ecological indicators, as associated with the pressure variables. Pressure variables
were superimposed on the biplot as vectors indicating the direction and magnitude of the most
important variables [22,24].

RESULTS

Model prediction performance for ecological indicators
Overall, ecological indicator mean prediction performance (R2

s ) of the random forest on the
OOB samples was between 0 and 0.07 (Table 3). Ecological indicators that served as synthetic
measures of energy flow (pelagic to demersal ratio, R2

s = 0.078; planktivore and benthivore to
piscivore and shrimp-fish feeders ratio, R2

s = 0. 056), diversity (species richness, R2
s = 0.061),

and a species sensitive to disturbance (longhorn sculpin biomass, R2
s = 0.07) had the highest

mean R2
s , suggesting that the anthropogenic and environmental pressures that we chose were

able to predict variation in these measures. Size based indicators (mean length, R2
s = 0.037; tro-

phic level, R2
s = 0.0) had the lowest mean prediction performance, which suggests that variation

in these indicators was poorly predicted by the selected pressure variables. Trophic level was
not predicted by any of the pressure variables and was eliminated from the gradient
forest model.

Importance measures for pressure variables
The most important pressure variables for predicting ecological indicators were anthropogenic
variables (Fig. 1). The mean importance of pressure variables (R2

p), as measured by its contribu-

tion to prediction accuracy on the OOB response was between 0.019 and 0.13. Anthropogenic
pressure variables (exploitation, R2

p = 0.13; 1-yr lagged exploitation, R2
p = 0.082; 1-yr lagged land-

ings, R2
p = 0.058; landings, R2

p = 0.053) had higher mean R2
p than environmental variables, sug-

gesting that these pressure variables were better able to predict variation in ecological indicators.
Landings (R2

p = 0.053) were not as important as 1-yr lagged landings (R2
p = 0.058), however, ex-

ploitation (R2
p = 0.13) was more important than 1-yr lagged exploitation (R2

p = 0.082), therefore,

including an estimate of community production available to harvest may be more useful in esti-
mating ecosystem fishing pressure than by lagging pressure variables. Environmental pressure
variables SST (R2

p = 0.051) and winter NAO (R2
p = 0.047) had importances comparable to land-

ings, whereas AMO (R2
p = 0.033) and precipitation (R2

p = 0.019) had lower mean importance.

Thresholds in ecological indicator response to pressure variables becomes evident when the
cumulative predictive performance (R2

s ) of each ecological indicator is integrated along each
pressure gradient (Fig. 2). Indicators of energy flow (planktivore and benthivore to piscivore and
shrimp-fish feeders ratio, exploitation ~ 0.25; pelagic to demersal ratio, exploitation ~ 0.4) and a

Table 3. Mean and range of model performance by ecological indicator, R2
s.

Ecological Indicator R2
s

Longhorn sculpin biomass 0.07 (0–0.21)

Length (mean) 0.037 (0–0.091)

Pelagic to demersal ratio 0.072 (0–0.14

Planktivore and benthivore to piscivore and shrimp-fish feeder ratio 0.056 (0–0.18)

Species richness 0.061 (0–0.12)

Trophic level (mean) 0 (0–0)

doi:10.1371/journal.pone.0119922.t003
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species sensitive to disturbance (Longhorn sculpin biomass, exploitation ~ 0.3) have a threshold
response when exploitation is between 0.2 and 0.4, whereas indicators of diversity (species rich-
ness, exploitation ~ 0.8) and body size (length, exploitation ~ 0.8) have a threshold response
when exploitation is ~ 0.8. These differing responses between types of ecological indicators sug-
gests that diversity and body size may not be as sensitive to selected pressures as indicators of en-
ergy flow. Indicator threshold responses to 1-yr lagged exploitation were at levels similar to
exploitation; however, the cumulative predictive performance (R2

s ) was generally lower. Pelagic
to demersal ratio and longhorn sculpin biomass both had threshold responses when 1-yr lagged
landings were ~300,000 t and 400,000 t. Indicators of energy flow (planktivore and benthivore to
piscivore and shrimp-fish feeders ratio, pelagic to demersal ratio) and species sensitive to distur-
bance (Longhorn sculpin biomass) have a threshold response when landings were ~300,000 t,
whereas indicators of diversity (species richness) and body size (length) have a threshold re-
sponse when landings were ~ 600,000 t. Species richness had a distinct threshold response when
SST ~ 11.5°C, whereas length and pelagic to demersal ratio had a gradual response with no dis-
tinct thresholds. Mean length and pelagic to demersal ratio had threshold responses to winter
NAO when NAO ~ -1 and 2, respectively. Species richness and planktivore and benthivore to pi-
scivore and shrimp-fish feeders ratio had a threshold response when AMOwas slightly greater
than 0. Mean length and species richness both had a threshold response when precipitation
was ~ 100 cm, whereas longhorn sculpin biomass had a gradual response with increasing
precipitation.

Important breakpoints along pressure gradients
The weighted average of all ecological indicator responses (Fig. 3), or aggregate ecosystem re-
sponse, for each pressure was calculated as the cumulative importance distributions of split

Fig 1. Importance of environmental and anthropogenic pressure variables weighted across
ecological indicator outputs R2

sp. EXP, exploitation; EXP_1, 1-yr lagged exploitation; LANDINGS_1, 1-yr
lagged landings (t); LANDINGS, landings (t); SST, sea surface temperature (°C); NAO_w, winter North
Atlantic Oscillation Index; AMO_a, mean annual Atlantic multi-decadal oscillation index;
PRECIP, precipitation.

doi:10.1371/journal.pone.0119922.g001
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improvement (Fig. 4) scaled by R2 weighted importance (Fig. S1) and standardized by the den-
sity of observations (Fig. S2). Thresholds in ecosystem response are identified at peak values
where the ratio is greater than one (Fig. 4). Important breakpoints in ecosystem composition
are noted for exploitation (0.2, 0.6), 1-yr lagged exploitation (0.2), 1-yr lagged landings
(220,000 t, 400,000 t, and 770,000 t), SST (11.0°C, 12.2°C, and 13.0°C), winter NAO (-1.5, 1.8),
AMO (0.0), and precipitation (98 cm, 110 cm, and 130 cm).

Biplot of ecological indicator values according to anthropogenic and
environmental pressures
Using cumulative importance functions (Fig. 3), shifts in ecological indicator value along pres-
sure gradients can be mapped in multivariate space using principal component analysis (PCA;
sensu Fig. 5 in [29]). The first two principal components account for 94.59% of the total vari-
ance. Coordinate position represents inferred ecosystem compositions, as associated with the
anthropogenic and environmental pressure variables, as vectors. Each coordinate position is
linked by a line segment to facilitate comparison as a time-series. Given the coordinate position

Fig 2. Cumulative shifts (in R2 units) of ecological indicator value across the gradient of
environmental and anthropogenic pressure variables. Each plot is scaled to the maximum cumulative
response to allow for direct comparison of ecological indicator response to each pressure variable. Ecological
indicator abbreviations are listed in Table 3.

doi:10.1371/journal.pone.0119922.g002
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of the inferred ecosystem compositions, two distinct groupings of data emerge: 1965–1977 and
1978–2010 (Fig. 5). Pressure variable vectors further indicate that exploitation, landings, and
1-yr lagged landings are important in defining this difference, which accounts for 89.5% of the
explained variation. Both groupings vary according to the 2nd PCA axis representative of envi-
ronmental pressure variables, however, this axis only accounts for 4% of the
explained variation.

Discussion
In this study, we explored ecosystem response to a suite of anthropogenic and environmental
pressure variables using an extension of random forest models, gradient forest. Specifically, we
sought to 1) quantify the importance of environmental and anthropogenic pressure variables
in predicting ecological indicator response, and 2) explore empirical shape and magnitude of
changes in indicator response across these pressure gradients.

Strengths and weaknesses of gradient forest approach
It can be useful to think of gradient forests in a multivariate sense, similar to PCA. The impor-
tance of each pressure variable is comparable to the length of a vector on a PCA scree-plot. But
the gradient forest proves to be more informative, as the cumulative response curve is an eco-
logically informed transformation of the pressure variables, which can be used to predict and
map potential patterns of ecological composition.

Fig 3. Cumulative shifts (in R2 units) of aggregate ecological indicator response across the gradient
for each environmental and anthropogenic pressure variable.Common scale allows for the direct
comparison ecosystem response across pressure variables.

doi:10.1371/journal.pone.0119922.g003
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Given our objectives, gradient forest provided a robust and concise way to quantify the im-
portance of pressure variables on ecological indicators of ecosystem status for the NES LME.
We found anthropogenic pressure variables to be more important in predicting ecological indi-
cator values than environmental variables. Although evidence suggests that the biological and
ecological processes are being influenced by environmental pressures in the NES LME [43,44],
the region has experienced far more significant pressure from fishing for centuries. Gradient
forest also enabled us to identify threshold changes in ecosystem response to multiple pressure
variables and to present these changes in a multivariate manner. Our results build upon previ-
ous findings exploring pressure-response relationships with similar ecological indicators and
pressure variables for the NES LME using generalized additive models [20]. Large et al. [20]
identified similar threshold levels and pressure response relationships for SST, AMO, and land-
ings; however, each of these relationships were modeled as separate models and one main find-
ing was the difficulty in synthesizing multiple pressures and multiple responses. The gradient
forest approach we describe here provides a simple way to synthesize multiple indicators and
multiple pressure variables using a common language, R2 units, and across a common set of di-
mensions, via PCA. Further, the translation into a common language can also facilitate com-
parisons between multiple ecosystems to identify patterns in ecological indicator response to
multiple pressures and levels of pressures that result in ecosystem thresholds. However,

Fig 4. Threshold shifts in the value of aggregated ecological indicators along the gradient of
environmental and anthropogenic pressure variables and reflect a rate of change in ecosystem
processes. Binned raw importance of splits from random forests for ecological indicator value relative to the
pressure variable on the horizontal axis. Density plots (lines) illustrate the estimated importance or turnover
rate at any given pressure value, which is estimated as the ratio of the density of split importance to the
density of observed predictor values along the predictor gradient. The dashed line indicates where the ratio is
1. Ratios> 1 indicate locations of relatively greater change in community composition, such that peaks in the
density plot indicate threshold values for each environmental predictor where ecosystem status is expected
to shift.

doi:10.1371/journal.pone.0119922.g004
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multiple pressures can also have non-additive [45] effects on ecosystems and additional explo-
ration of thresholds between different combinations of pressures is warranted [21].

Compared to previous studies, model prediction performance on OOB sample values (R2
s )

from our study (R2
s range: 0–0.21) were notably low compared to Pitcher et al. ([24]; R2

s range
0–0.35) and Baker and Hallowed ([25]; R2

s range: 0–0.77). However, both Pitcher et al. [24] and
Baker and Hallowed [25] were investigating community compositional changes across physical
gradients and used species abundance metrics derived from survey data linked directly to phys-
ical variables. Here, we present aggregated ecological data for an entire large marine ecosystem
linked to commercial landings and large-scale environmental variables. Ecosystems are highly
dynamic and ecological data often contains more unexplained variability, however, gradient
forest was still able to identify important variables and thresholds.

Ecological indicators
Anthropogenic pressure variables were able to predict ecological indicator values better than
environmental pressure variables. Further, threshold responses were more pronounced (i.e.,
more rapid increase on cumulative importance curves) for anthropogenic pressures compared
to environmental pressures, and we identified levels of fishing pressure that resulted in a dis-
tinct ecosystem structure (Fig. 5). Care and context are important when interpreting indicator
response to pressures, as magnitude and direction of ecosystem response to pressures may not
be entirely straightforward. Here, we identify regions of change, both positive and negative, rel-
ative to pressure. Patterns of threshold responses were similar between exploitation and land-
ings, suggesting that confounding between exploitation and ecological indicators did not
influence our findings. However, as ecological indicators of ecosystem status have been devel-
oped, much of the impetus in indicator selection has been to measure the effects of fishing pres-
sure on ecosystem attributes [35,36]. Given that EBFM is a management approach, the ability
to control fishing pressure has been the rationale behind the use of ecological indicators that
are heavily influenced by fishing pressure [15]. We suggest that ecological indicators should be
reconsidered so they are relevant measures of ecosystem status and function without any pre-
disposed sensitivity to any perceived pressure, thereby, creating a suite of ecological indicators

Fig 5. Biplot of the first two principal components display the coordinate positions and connecting segments for each year and indicating inferred
compositional patterns. Environmental and anthropogenic pressure variables used in the analysis displayed as vectors.

doi:10.1371/journal.pone.0119922.g005
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that are more holistic and we can ensure that fishing and environmental thresholds can be
identified. Given the gradient forest framework, additional ecological indicators could provide
a much more comprehensive representation of how multiple pressures influence ecosystems
without the fear of over-parameterizing models.

Ecosystem thresholds
Using the gradient forest method, we found that increased fishing pressure (i.e., exploitation,
landings, and both 1-yr lagged fishing pressure variables) resulted in rapid compositional
change in ecological indicator values. Threshold responses in energy flow indicators occurred
at lower levels of fishing pressure, suggesting that with increasing fishing pressure energy trans-
fer within the NES LME is altered. As fishing pressure increases further, threshold responses in
the diversity indicator occurs. Given the multiple community configurations that can produce
similar diversity indices, Link [15] suggests that ecological indicators of diversity might be bet-
ter suited as a precautionary tool. Perhaps the high level of fishing pressure that results in a di-
versity response might reinforce this suggestion. Longhorn sculpin, a scavenging generalist
that rapidly increases in abundance in response to seafloor disturbance caused by bottom
trawling [46], has drastic threshold responses that correspond to both types of fishing pressure.

Collectively our results indicate significant ecosystem responses when landings are at
400,000 t, which represent ~30% of the maximum ever observed for this system. Similarly, sig-
nificant ecosystem responses are observed at exploitation rates of 20%. Certainly environmen-
tal pressures also elicit some response, yet fishing pressure is potentially the one variable that
we can control. These results suggest that when landings approach 30% of those ever observed,
or more practically that when the ratio of surveyed biomass to landings approaches 20%, the
NES LME will likely be approaching an ecosystem threshold. These empirical derivations war-
rant further testing in other ecosystems to see if these approximate levels hold, but the method
proposed here provides a highly feasible means to do so. Further, delayed effects of fishing and
environmental pressures should be explored in more detail [38]. As we continue to move to-
wards implementing EBM, the need for clearly defined decision criteria remains paramount.
This gradient forest approach could serve as an important means for establishing ecosystem-
level decision criteria to make EBMmore of an operational reality.

Supporting Information
S1 Data. North Atlantic Oscillation index (December-March) accessed at https://
climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-
based on 28 January 2015.
(CSV)

S1 Fig. Histogram and kernel density of splits location and importance.
(TIF)

S2 Fig. Histogram of splits location and importance, and kernel density of observations
along the gradient.
(TIF)
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